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Feedback of a small-scale magnetic dynamo
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We develop a WKB approach to the rapid distortion theory for magnetohydrodynamic turbulence with large
magnetic Prandtl number. Within this theory, we study the growth of small-scale magnetic fluctuations in a
large-scale velocity field being initially a pure strain. We show that the magnetic Lorentz force excites a
secondary flow in the form of counterrotating vortices on the periphery of the magnetic spot. Those vortices
slow down stretching of the magnetic spot and thus provide a negative feedback for a small-scale magnetic
dynamo.
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I. INTRODUCTION to simplified nonlinear dynamo modé€l&4].
On the other hand a statistical theory of the nonlinear

Probably, the main controversy in the present-day dy-dynamo is expected to be a hard task because of the strong
namo theory(see[1,2] for a review on the dynamo theoris intermittency of dynamo-grown field. Dynamo-generated
related to the role of small-scale magnetic fluctuationsmagnetic fluctuations are intermittefrit5] and are localized
Those are the fastest-growing fluctuations that may change spots that occupy a small fraction of the volume. In such
field-generating flow well before the large-scale magneticases, a qualitative understanding of particular events and
field has any chance to gro]. This is particularly impor-  configurations is usually of a great help. Here we develop an
tant when the magnetic Prandtl numbéviscosity-to-  analytic formalism to describe the interaction of a large-scale
diffusivity ratio) is high as it seems to be the case for thefiow and small-scale spectrum of magnetic fluctuation. We
galactic magngtic fielg4]. The kinematic stage of the small- 5ke advantage of high magnetic Prandtl number, wkath
scale magnetic dynamo is well-understood by ni@w7].  hough hard for DNSsimplifies the analytical treatment. We
The spectrum of magnetic fluctuations grows in amplitudeen apply our formalism to describe evolution of a spot of
while propagating towards small scalgl. Whether at the g, scale magnetic fluctuations in the flow that is initially a

time of feedback appearance this propagation is checked b;¥ure large-scales strain. Numerical simulations are also per-

diffusivity (due to resistivity or not, the most important con- . . . "
clusion from the kinematic theory is that the maximum Offormed to investigate further this problem. Initially, the spot

magnetic energy is at the smallest scales available. Certainl} ¢ a?<|ally symmetric and applies no force to the ﬂOW' ‘I_'hg
it is a long way from such a spectrum to the steady magne- rain ,ﬂOW. breaks the symlmet.ry of the spot, stretching it in
tohydrodynamic(MHD) turbulence which always has the one dlrgct|pn and contracting in another. The_z energy of the
maximum of magnetic energy at large scales. magnetic field grows exponentially _at the _k|_nemat|c stage
After the kinematic stage, the next step on this Waywhen the back-reaction on the flow is negligible. We show
(called the nonlinear dynamo regijnis to consider a feed- that the secondary flow produced py the back-reaction of the
back of the small-scale magnetic fluctuations on the large€volving spot is a set of four vortices each centered at the
scale velocity field. This nonlinear problem is difficult to Periphery of the spot. Those vortices suppress stretching in-
tackle and much less is known about the transition to a satwside the magnetic spot while accelerate it outside. The result
ration phase. One may investigate nonlinear dynamo by diis a negative feedback and the saturation of small-scale dy-
rect numerical simulation§DNS) of MHD equations in namo. This seems to agree well with the direct numerical
which the velocity field is now no longer prescribed like in simulations of the feedback of turbulent magnetic dynamo
the kinematic cas¢8—11]. A standard ABC forcing of the (Cowley and Maron, private communicatjon
velocity field (named after Arnold, Beltrami, and Childrgss ~ One point has to be specially emphasised about the moti-
has been generally used in numerical simulatiGee[12]  vation of the present study. Namely the growth of the mag-
for a forced Taylor-Green vort¢xEvidence of the existence netic energy can only come at expense of the kinetic energy
of a saturation phase has been shown for different magnetigepletion so that the negative feedback seems to be obvious.
Prandtl numberge.g., up to~10 in Ref.[11]) and a quasi- Why bother to study it? To answer this question we note that
equipartition between the kinetic and the magnetic energyhe total energy is not conserved in our system because the
has often been observgé8-11]. Finally, the effect of mag- velocity fields are not sufficiently localized in space, as will
netic turbulence on the velocity field chaotic properties hade explained in Sec. Il C. In other words, the magnetic spot
also been studied numericall$3,10. However DNS study feedback could initiate an influx of the kinetic energy from
is limited to low Reynolds and magnetic Reynolds numbersinfinity which, in principle, could reverse the feedback from
and not very high magnetic Prandtl number, due to the 3-Dhegative to positive. Our study shows that an energy influx is
nature of the problem. Therefore, to study the transition fromindeed present in the system which is seen, for example, in
the kinematic to the dynamic regime, one often has to resotthe observed growth of the total ener¢gven though our
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system is dissipativ¢! However, we will see that such an with the same functiori(x) as in Eq.(6). The writing ofAj,

energy influx does not prevent the dynamo saturation. in terms of Gabor transforms is convenient in this problem as
we will see later.
Il. DERIVATION OF THE GOVERNING EQUATIONS According to the Erthel’s theorem we can introduge

A. General description =A\b and rewrite Eq(2) as

The viscous incompressible MHD equations read (d,+u-V)pg=0V?y. (12
(d+u-V)u=—-VP, +b-Vb+vV?u, (1) The Jacobi matrix is defined as
(dy+u-V)b=b-Vu+aV?b, 2) Nij=dx @i, (12
V-u=0, (3 wherea is the initial coordinate of the fluid particlege.,
X(t=0)=a). The application of the Gabor transform to Eq.
V-b=0, (4) (11) leads to

where u is the velocity, b the Alfven velocity (b

A on

=B/ wopo, With B the magnetic fielduy the magnetic per- D= —ok’s, (13

meability andp, the uniform density, P, the total pressure, with

v the kinematic viscosity and the magnetic diffusivity.

Applying the curl operator to Eq1) we obtain the vorticity D=9 +x-V+k.-V (14)

equation T o
0twi+uj&jwi—w1¢9jui=Eimno"jmbjbn-l- VVZ(z)i s (5) ).(:U, (15)

wherew; = €j;,9;uUy and € is the antisymmetric tensor. We k=—V(k-u). (16)

assume the size of the magnetic spatd of the secondary

flow it produce$ to be much larger than the inverse typical The solution of Eq(11) is readily obtained if we integrate

wavenumber of magnetic fluctuations. To average over thehis equation along characteristitks) and (16). This gives
small-scale magnetic field we apply a WKB formalism based

on the the Gabor transfori8,19. In this formalism the 7(x.k,t)=b(a,q,0e", (17)
average is defined as a space coordinate filter

where
5(x,t)=f €f2( €] x—Xo|) @(Xg,t)dXg, (6) .
F:_O'f [)\)\T]X(a’t)dt, (18)
where f is a function rapidly decreasing at infinifye.qg., 0
exp(—x?)] such that
Xp(x)] su k=\Tq. (19
f f2(x)dx=1, (7 We now assume that kinematic viscosity) (of the fluid

is much larger than diffusivity ) of the magnetic field, a
and with //L<e<1, where/ andL are the characteristic Situation observed for instance in the interstellar medium
lengthscale of magnetic turbulence and the turbulent spdd6,17 (see alsd4]). We shall completely neglect diffusiv-
size. The assumption of a large-scale velocity figld 4 yin what follows assuming that feedback starts before the
=u) implies that the vorticity is also a field at Iarge—’scale smallest scale of magnetic field reaches diffusion scale. As
. = i "will be seen, feedback stops stretching-contraction evolution
i.e., o= w. Therefore average equati¢s) becomes of the magnetic spot so no further small scales are produced
) and our approach is self-consistent. Fo+=0, the Gabor

AU wi—w U= 0 A+ 1V2w: o .
Jy; +Ujdj0; = 0j0;Ui = €imndimAjn + 1V "0, transform of the magnetic field can be written as

with ~ _1 - 1 ~
b;(x,K, 1) =Nj; "(x,t) ;i (X, K, 1) =N *(x,t) 7(2,0,0).  (20)
1 - -
Ajn(th):bjbn:(zT)sf bj(x,k,t)bn(x, —k,t)dk, (9  Then we obtain
and where the Gabor transforx{x,k,t) of the Alfvén ve- -1 -1 f 0 0 _ dg
locity is defined as Ain =M (% DXar(x1) | 01(2.0.0)br(2 q'O)(ZTr)E"

21

b(xk,t)= f f(elx—xo)e™ ™ *b(x, 1) dxo, 10 Foran isotropic turbulence we write
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SARARARRNRRRR RN RN R NN AN RN R R AR RN R R RN NN

F(@Q(laD), (22

1 m
bi(a,q,0b(8,—9,0)= <5|m ad

where functiong=(a) andQ(a) determine(arbitrary) initial
shape of the turbulent spot and the turbulence spectrum, re-
spectively. It follows that

10000.00

Ajn=CX\ (XN (X DF (a), (23

whereC is a constant defined as

1 a:
e ( ) ||)(2 ) 24

The relation(23) implies that only the intensity a®(|q|) is
important, not its form. Therefore the const&happears as
the initial intensity of the magnetic turbulence. 1eor s

100.00 N

fl dywlldx, f\u,@,waldx, Vflvzwg}dx

B. The Stokes regime i

Let us consider now a particular case of the initial veloc-
ity field being pure two-dimensional strain=(spyX,
—5spY,0). Not only this is a simple model of a dynamo- 0.0
generated flow yet also known to be most dynamo-effective 010 020050 040 0.50
when magnetic diffusivity is taken into account]. In the
case of large magnetic Prandtl numbes; o, a significant FIG. 1. Temporal evolution in linear-log coordinates of the dis-
amount of magnetic energy is concentrated at the scalegipative term(solid line), inertial terms(dash-dotted lineand time
smaller than the dissipative scale of the kinetic endiyl-  derivative of the vorticitydotted ling which appear in E(8). The
mogorov scalg Thus we will consider now the Stokes re- three quantities are integrated in absolute value in the entire box.
gime where the Reynolds number is smalf$,<v). Then
for a two-dimensional strain we can rewrite H§) in the =~ Where —d,,A;, is maximal (i.e., on the periphery of the

stationary case as the following linear equation spoy, the sign of vorticity is negative in thext>0,y>0)
domain. To study a later stage when feedback is substantial

(911 22 Arat dp1(Ago— A1) + vV 203~ d1w3=0. (25 we have to complete the syste@8) and(25) by the follow-
ing equation

ARTTEEEVI RTNNTNITA FRRTRTSNTISARTTRTUSU INUNTARTRE ENTAURNRTA TNNRRARUR

0.60  0.70

Note that we did not assume smallnessvgfwith respect to
Sos s_o.t.hat thg secondary flow is allowed to be as strqng as D.a=(4+u-V)a=0, (27)
the initial strain flow. Note that even thoughws term is

important initially (since @3=0 att=02) it wil sgop Wurm- \which describes the evolution of the initial coordinates of the
negligible under the condition/>s,L” where L is the i particles. For that we define the velocity field as
(smalley dimension of the magnetic spot. We assume this

condition to be satisfied initially and then it only improves
and the spot contracts ydirection. We checked numeri-
cally that indeedd, w3 term is negligible except for a very
short initial interval of time(see Fig. 1 and Sec. Il A After
neglecting this term, Eq25) turns into a Poisson equation
so that vorticity could be found analytically for any given
spatial form of the magnetic spot. A=0, A;,=0 while
A11=A,,. The initial evolution then can be studied analyti-
Ca”y tak"']gA from a k|nemat|c stage One can eas”y con- We will consider in our Study the initial coordinates
vince oneself that as time goes, the main term will be

—d,1A11. Then, a=(ay,ay)=(Xx,y), (30

U= (SpX+ dyth, = Soy — dxp), (28)

wheresy is the strain andy is the stream function related to
the vorticity ws by the relation

w3= — V24, (29

w3(X,y,t) with a vorticity w5 taken initially null. Then the algorithm to
., , , solve the system is the following: using the initial condition
_ V*lf fx An(X"y", D(x=x")(y—y )dxrdy,_ (26 (30 we solve Eq/(23) which leads to the value of the vor-
[(x—x")2+(y—y")?]? ticity through the resolution of E¢(25). The value of the
stream function is deduced from E9). Finally we have to
That shows that vorticity has to appear as four vortides  solve Eqs(28) and(27) to come back to the beginning of the
cause ofx— —x and y— —y symmetries having centers loop.
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C. Kinematic stage In order to prove that we are consistent with the assump-
For the purpose of future comparison let us mentiontion made in Sec. Il B about the negligible role played by
briefly the well-known facts about the evolution during the 1@s (@nd by the nonlinear termswe have first performed a
kinematic stage in the uniform strain flow. It is straightfor- Simulation including Eq(8) instead of Eq(25). The algo-

ward to show that the vectar evolves according to rithm used to solve Ed8) is the following: first we solve the
left-hand-side of Eq(8) and then the value found fas; is
a=(xe %',ye" "), (31)  used to compute the right-hand side terms. Then at the next
step the right-hand side terms are taken into account to cor-
and therefore the Jacobi matrix is rect the Poisson equation constituted by the left-hand side of
Eq. (8). The result is displayed in Fig. 1: it is the temporal
e 0 0 evolutions of the time derivative of the vorticitff d; w5 dx,
\=| 0 edt 0] (39 inertial terms [|ujdjwsldx, and dissipative term

v[|V2w3|dx. The absolute values are taken to give the order
of magnitude of the different quantities. As expected the
) . term J,w5 is important only initially, then the dissipative
This result means that all tern#§, , j#n, are null. In our o) g greatly dominant. Consequently in the rest of this
numerical simulationgsee Sec. Il the functionF is defined study we will consider that the resolution of E@5) is good

as enough to describe the regime that we are dealing with.

0 0 1

F(a)eexpl _4(a>2<+ a)z/)) (33 B. Negative feedback and saturation

in order to decrease rapidly at infinitf(a) can be seenasa  Figure 2 shows the contour plots 8f,(x,y) at timest
measure of the size of the turbulent spot. According to Eq=0.005, 0.4, 0.6, and 0.8. Hereafter only a quadrant is going
(31) we see that the magnetic turbulence, initially contained© be considered because of the symmetry of the problem.
in a disk centered at the origin, will flatten in tyedirection ~ We clearly see on this quadrant the effect of the strain flow
because of its interaction with the uniform strain flow. Theon the spot which consists to break the initial symmetry by
description proposed here will become invalid when the sizestretching the spot in one direction and contracting it in an-
of the spot will reach the size of the strain field, i.e., whenother. Note that the spot distortion at the kinematic stage
the intermediate scale will reach the size of the large scalewould lead to elliptic contours, and the observed deviation
from the elliptic shape is due to the back-reaction of turbu-
lence. This back-reaction is seen in Fig. 3: it is the contour
plot of the vorticity w3(x,y) for the same times as in Fig. 2.
A. Initial setup and accuracy A negative vortex is produced at the periphery of the spot.

Let's present now the numerical simulations of the feed-Here again the initial symmetry is lost due to the effect of the
back. The temporal evolution of the feedback in the Stokestrain flow.
regime is governed by the system of six equati(33, (23), Temporal evolution of magnetic energy is displayed in
(25), (29), (28), (27) derived above. The numerical resolu- Fig. 4: on top we have the evolution ofA;;dx and
tion of such a system does not present any particular diffiA;;(X.,0) with x.=(0.15625,0.15625). A comparison is
culty except for the Poisson equati(®b,29 for which a full  made with the exponential law of index 2 thag,; should
multi-grid algorithm is used. All computations have a reso-follow in the kinematic case. For convenience the two quan-
lution of 512<512 grid points in a box of sizeg XLy, with  tities are normalized to their initial values. In the first stage,
a lengthLg=8. The valuess,=1, v=2%x10* and C=4 A, follows the exponential law but soon we observe a de-
X 10* are used. They have been chosen in order to equalizgation which amplifies with time. We interpret that as a
the contribution of the dissipative term to the magnetic termsaturation effect due to the negative feedback of small scales,
(v~Aq;lsy) and to have a small Reynolds number this saturation being more important closer to the center of
(A;1L%/1%°<1). In both cases the magnetic contribution isthe spot. Note that at the final time of the computation the
represented by the dominant teds, which can be substi- growth of the total energy, which is more or lega;dx, is
tuted for the intensity of the magnetic turbulenCe With ~ smaller than that obtained without feedback by a factor
this choice of parameters we see that at time of order one the 1.56. The bottom of Fig. 4 deals with the temporal evolu-
ratio between the kinetic energy and the magnetic energyjon of the total energy, the magnetic energjes,;dx and
SoL?/v, is much smaller than one. The initial velocity field is fA,,dx. The plots are compared with exponential laws of
a pure two-dimensional strain. The resolution of EZ7) indices 2 and- 2. Note the symmetrical evolution of the two
leads after a finite time to unavoidable numerical problemsquantities. Temporal evolution in log-log coordinates of the
In practice they appear from tinte- 0.8 which will be con-  kinetic energy of the secondary flow integrated in the entire
sidered consequently as the final time of computations. Notbox is given in Fig. 5. As we see, it behaves roughly like a
that our WKB formalism and the symmetry of the flow al- power law of index 2. We note finally that the kinetic energy
lowed us to reduce the three-dimensional problem to a twoef the secondary flow is negligible compared to the magnetic
dimensional one. energy at all timegsee also Fig. ¢

Ill. NUMERICAL RESULTS
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FIG. 2. Contour plots 0fA14(X,y) at timest
=0.005, 0.4, 0.6, and 0.8. Note the different
scaling of thex- and y-axes for the last three
times. Only a fraction of the numerical box is
shown. A deviation from the elliptic shape is ob-
served.

0.0 05 . . . . 0.0 05

Figure 6 shows the temporal evolution of the velocity that strain reduction at the origin provides the mechanism for
gradient du(x;,0)/dx at different points X;,0) along the the negative feedback and the turbulence saturation. A com-
x-axis such thak;=0, 0.25, 0.5, and 1.0. This quantity mea- parison is made with an exponential law of index2. The
sures the strain modifications by the secondary flow. Notgradient decreases more strongly closer to the origin,

w{x,y)
4 T

FIG. 3. Contour plots of the vorticity(X,y)
at timest=0.005, 0.4, 0.6, and 0.8. Note the
negative value of the vorticity; note also that the
absolute value of the vorticity increases in time.
Only a fraction of the numerical box is shown.
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Magnetic Energy (t)

Magnetic Energy (t)

FIG. 4. (Top) Temporal evolution in linear-log coordinates of
JA1dx (solid ling). A comparison is made witlh;4(x.,0) (dash-
dotted ling at the pointx,=(0.156 25,0.156 25) and with an expo-
nential law of index 2(dashed ling The plots are normalized to
initial values[2.4x 10* for the integrated quantity, andl;;(x.,0)
=1.1X10°]. (Bottom) Temporal evolution in linear—log coordi-
nates of the total energfdotted ling, magnetic energiegA;,dx
(increasing solid lineand f A,,dx (decreasing solid line The plots
are compared with exponential laws of indices 2 an@ (dashed

line).

Kinetic Energy (t)

FIG. 5. Temporal evolution in log-log coordinates of the kinetic
energy of the secondary floysolid line) integrated in the entire
box. A comparison is made with a power law of indeXdashed

0.10

0.20 030 040 0.50

0.60 0.70

0.10

0.20 030 040 0.50
t

0.60 0.70

10™

0.001

0.010 0.100
t
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du(x;,0)/dx

0.10 020 030 0640 050 060 0.70
t

FIG. 6. Temporal evolution in linear-log coordinates of the ve-
locity gradientdu(x;,0)/dx at different points X;,0) located along
thex-axis such thak; =0 (solid line), 0.25(dashed ling 0.5 (dash-
dotted ling, and 1.0(dotted ling. A comparison is made with an
exponential law of index-2 (long dashed ling

however its value never cross the ayis 0. The temporal
evolution of integrated vorticity- [ w;dx is given in Fig. 7.
It follows approximately a power law of index 1.

C. Energy conservation

Figure 8 shows the temporal evolution of the total energy
J[E+— E+(t=0)]dx in which the kinetic energy of the strain
flow is not included, changes magnetic energig®\;;
—A(t=0)]dx, [[A,(t=0)—A,,]dx, components of the
kinetic energy[(d,¥)?dx, [(4,¥)?dx and dissipated ki-
netic energyr[ 5[ (ws(x,t'))%dx dt’. We observe that each
quantity increases in time, including the total energy. As we
said before, the kinetic energy is defined as the integral of the
square velocity of the secondary flow. It is equal to the total
kinetic energy minus the kinetic energy of the background
strain flow % [((U+u)2—U?)dx, because the cross term

10.00F '
», 1.00F s E
o F e ]
B -
jgsl e
X2 -7
3 010F e i
| -
0.01 ¢ E
5 taal " Loy ]
0.001 0.010 0.100

t

FIG. 7. Temporal evolution in log-log coordinates of the inte-

line). Note that the kinetic energy plays a negligible role in the grated vorticity— [ w3dx (solid line). A comparison is made with a
temporal evolution of the total energgee also Fig. %

power law of index 1(dashed ling
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o T T IV. CONCLUSIONS

In this paper, we have developed a WKB formalism to the
rapid distortion theory for MHD turbulence, at large mag-
netic Prandtl number, in order to study the nonlinear dynamo
problem and understand the origin of the saturation phase.
The interaction between a spot of small-scale magnetic fluc-
tuations and a flow seen like a pure strain at large scales has
been considered. The effect of the strain flow is to break the
initial symmetry of the spot by stretching it in one direction
and contracting in another. The main property that we have
observed it is the generation of a set of four vortices along
the sides of the spots due to the back-reaction of the evolving
spot. The vortices are such that they tend to suppress stretch-
- R R ing inside the magnetic spot while accelerate it outside. This

001 0.10 effect leads to a negative feedback and provides a saturation
mechanism of small-scale dynamo. Even though the initial

FIG. 8. Temporal evolution in log-log coordinates of the total flow of two-dimensional pure strain has been considered, it
energy[Erdx— [E(t=0)dx (solid ling), [A;,dx—[A;,(t=0)dx is claimed that the results are representative of wide classes
(dashed ling  [A;(t=0)dx—[Axdx (dash-dotted line  of dynamo-generated flows.

J(9,%)?dx (long dashed ling [ (4,¥)*dx (dash-three-dotted line Although we have considered only 2-D strain fields, it is
and »fJ (w3)?dx (dotted ling. Note increase of the total energy. most likely that a similar mechanism of the dynamo satura-

2[U-udx equals zero. It may seem strange that the tota}ion via generation of localized large-scale vortex structures
q ' y 9 exists in 3-D too. Naturally, to be localized such vortices

energy, the sum Of. the magnetic E.im.j k|ne.t|c ENErYIes, IS Ny st have shapes of closed loops. Thus, instead of a 2-D
creasing. Explanation of this fact is in an insufficiently fast

e O vortex quadrupole, two oppositely oriented vortex rings
decrease at infinity of ”;e veIOC|t_y field _generated by the(mirror symmetric with respect to the principal plane of the
vortex quadrupoley~ 1/R* whereR is the distance from the Sy

\ ; strain will be observed.
guadrupole’s center Because of that the integral over the
entire space of the energy flux terms like U)(U- u) where
n is the normal tp the doma|.n_of mtegrapc(m the Iopal ACKNOWLEDGMENTS
energy equatior) diverges and it is not possible to obtain any
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