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Feedback of a small-scale magnetic dynamo

S. V. Nazarenko,1 G. E. Falkovich,2 and S. Galtier1
1Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
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~Received 6 August 2000; published 21 December 2000!

We develop a WKB approach to the rapid distortion theory for magnetohydrodynamic turbulence with large
magnetic Prandtl number. Within this theory, we study the growth of small-scale magnetic fluctuations in a
large-scale velocity field being initially a pure strain. We show that the magnetic Lorentz force excites a
secondary flow in the form of counterrotating vortices on the periphery of the magnetic spot. Those vortices
slow down stretching of the magnetic spot and thus provide a negative feedback for a small-scale magnetic
dynamo.
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I. INTRODUCTION

Probably, the main controversy in the present-day
namo theory~see@1,2# for a review on the dynamo theory! is
related to the role of small-scale magnetic fluctuatio
Those are the fastest-growing fluctuations that may cha
field-generating flow well before the large-scale magne
field has any chance to grow@3#. This is particularly impor-
tant when the magnetic Prandtl number~viscosity-to-
diffusivity ratio! is high as it seems to be the case for t
galactic magnetic field@4#. The kinematic stage of the smal
scale magnetic dynamo is well-understood by now@4–7#.
The spectrum of magnetic fluctuations grows in amplitu
while propagating towards small scales@4#. Whether at the
time of feedback appearance this propagation is checke
diffusivity ~due to resistivity! or not, the most important con
clusion from the kinematic theory is that the maximum
magnetic energy is at the smallest scales available. Certa
it is a long way from such a spectrum to the steady mag
tohydrodynamic~MHD! turbulence which always has th
maximum of magnetic energy at large scales.

After the kinematic stage, the next step on this w
~called the nonlinear dynamo regime! is to consider a feed
back of the small-scale magnetic fluctuations on the lar
scale velocity field. This nonlinear problem is difficult t
tackle and much less is known about the transition to a s
ration phase. One may investigate nonlinear dynamo by
rect numerical simulations~DNS! of MHD equations in
which the velocity field is now no longer prescribed like
the kinematic case@8–11#. A standard ABC forcing of the
velocity field ~named after Arnold, Beltrami, and Childres!
has been generally used in numerical simulations~see@12#
for a forced Taylor-Green vortex!. Evidence of the existenc
of a saturation phase has been shown for different magn
Prandtl numbers~e.g., up to;10 in Ref.@11#! and a quasi-
equipartition between the kinetic and the magnetic ene
has often been observed@8–11#. Finally, the effect of mag-
netic turbulence on the velocity field chaotic properties h
also been studied numerically@13,10#. However DNS study
is limited to low Reynolds and magnetic Reynolds numbe
and not very high magnetic Prandtl number, due to the 3
nature of the problem. Therefore, to study the transition fr
the kinematic to the dynamic regime, one often has to re
1063-651X/2000/63~1!/016408~8!/$15.00 63 0164
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to simplified nonlinear dynamo models@14#.
On the other hand a statistical theory of the nonline

dynamo is expected to be a hard task because of the st
intermittency of dynamo-grown field. Dynamo-generat
magnetic fluctuations are intermittent@15# and are localized
in spots that occupy a small fraction of the volume. In su
cases, a qualitative understanding of particular events
configurations is usually of a great help. Here we develop
analytic formalism to describe the interaction of a large-sc
flow and small-scale spectrum of magnetic fluctuation. W
take advantage of high magnetic Prandtl number, which~al-
though hard for DNS! simplifies the analytical treatment. W
then apply our formalism to describe evolution of a spot
small-scale magnetic fluctuations in the flow that is initially
pure large-scales strain. Numerical simulations are also
formed to investigate further this problem. Initially, the sp
is axially symmetric and applies no force to the flow. T
strain flow breaks the symmetry of the spot, stretching it
one direction and contracting in another. The energy of
magnetic field grows exponentially at the kinematic sta
when the back-reaction on the flow is negligible. We sh
that the secondary flow produced by the back-reaction of
evolving spot is a set of four vortices each centered at
periphery of the spot. Those vortices suppress stretching
side the magnetic spot while accelerate it outside. The re
is a negative feedback and the saturation of small-scale
namo. This seems to agree well with the direct numeri
simulations of the feedback of turbulent magnetic dyna
~Cowley and Maron, private communication!.

One point has to be specially emphasised about the m
vation of the present study. Namely the growth of the ma
netic energy can only come at expense of the kinetic ene
depletion so that the negative feedback seems to be obv
Why bother to study it? To answer this question we note t
the total energy is not conserved in our system because
velocity fields are not sufficiently localized in space, as w
be explained in Sec. III C. In other words, the magnetic s
feedback could initiate an influx of the kinetic energy fro
infinity which, in principle, could reverse the feedback fro
negative to positive. Our study shows that an energy influ
indeed present in the system which is seen, for example
the observed growth of the total energy~even though our
©2000 The American Physical Society08-1
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system is dissipative!!. However, we will see that such a
energy influx does not prevent the dynamo saturation.

II. DERIVATION OF THE GOVERNING EQUATIONS

A. General description

The viscous incompressible MHD equations read

~] t1u•¹!u52¹P* 1b•¹b1n¹2u, ~1!

~] t1u•¹!b5b•¹u1s¹2b, ~2!

¹•u50, ~3!

¹•b50, ~4!

where u is the velocity, b the Alfvén velocity (b
5B/Am0r0, with B the magnetic field,m0 the magnetic per-
meability andr0 the uniform density!, P* the total pressure
n the kinematic viscosity ands the magnetic diffusivity.
Applying the curl operator to Eq.~1! we obtain the vorticity
equation

] tv i1uj] jv i2v j] jui5e imn] jmbjbn1n¹2v i , ~5!

wherev i5e i jk] juk ande i jk is the antisymmetric tensor. W
assume the size of the magnetic spot~and of the secondary
flow it produces! to be much larger than the inverse typic
wavenumber of magnetic fluctuations. To average over
small-scale magnetic field we apply a WKB formalism bas
on the the Gabor transform@18,19#. In this formalism the
average is defined as a space coordinate filter

v̄~x,t !5E e f 2~eux2x0u!v~x0 ,t !dx0 , ~6!

where f is a function rapidly decreasing at infinity@e.g.,
exp(2x2)# such that

E f 2~x!dx51, ~7!

and with l /L!e!1, wherel and L are the characteristic
lengthscale of magnetic turbulence and the turbulent s
size. The assumption of a large-scale velocity field~i.e., ū
5u) implies that the vorticity is also a field at large-sca
i.e., v̄5v. Therefore average equation~5! becomes

] tv i1uj] jv i2v j] jui5e imn] jmAjn1n¹2v i , ~8!

with

Ajn~x,t !5bjbn5
1

~2p!3E b̂ j~x,k,t !b̂n~x,2k,t !dk, ~9!

and where the Gabor transformb̂(x,k,t) of the Alfvén ve-
locity is defined as

b̂~x,k,t !5E f ~eux2x0u!eik•(x2x0)b~x0 ,t !dx0 , ~10!
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e
d

ot

,

with the same functionf (x) as in Eq.~6!. The writing ofAjn
in terms of Gabor transforms is convenient in this problem
we will see later.

According to the Erthel’s theorem we can introduceh

5l̂b and rewrite Eq.~2! as

~] t1u•¹!h5s¹2h. ~11!

The Jacobi matrixl is defined as

l i j 5]xj
ai , ~12!

wherea is the initial coordinate of the fluid particles~i.e.,
x(t50)5a). The application of the Gabor transform to E
~11! leads to

Dtĥ52sk2ĥ, ~13!

with

Dt5] t1 ẋ•¹1 k̇•¹k , ~14!

ẋ5u, ~15!

k̇52¹~k•u!. ~16!

The solution of Eq.~11! is readily obtained if we integrate
this equation along characteristics~15! and ~16!. This gives

ĥ~x,k,t !5b̂~a,q,0!eqGq, ~17!

where

G52sE
0

t

@llT#x(a,t)dt, ~18!

k5lTq. ~19!

We now assume that kinematic viscosity (n) of the fluid
is much larger than diffusivity (s) of the magnetic field, a
situation observed for instance in the interstellar medi
@16,17# ~see also@4#!. We shall completely neglect diffusiv
ity in what follows assuming that feedback starts before
smallest scale of magnetic field reaches diffusion scale.
will be seen, feedback stops stretching-contraction evolu
of the magnetic spot so no further small scales are produ
and our approach is self-consistent. Fors50, the Gabor
transform of the magnetic field can be written as

b̂ j~x,k,t !5l j l
21~x,t !ĥ l~x,k,t !5l j l

21~x,t !ĥ l~a,q,0!. ~20!

Then we obtain

Ajn5l j l
21~x,t !lnm

21~x,t !E b̂l~a,q,0!b̂m~a,2q,0!
dq

~2p!3
.

~21!

For an isotropic turbulence we write
8-2
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b̂l~a,q,0!b̂m~a,2q,0!5
1

4pS d lm2
qlqm

q2 DF~a!Q~ uqu!, ~22!

where functionsF(a) andQ(a) determine~arbitrary! initial
shape of the turbulent spot and the turbulence spectrum
spectively. It follows that

Ajn5Cl j l
21~x,t !lnl

21~x,t !F~a!, ~23!

whereC is a constant defined as

C5
1

4pE S 12
q1

2

q2DQ~ uqu!
dq

~2p!3
. ~24!

The relation~23! implies that only the intensity ofQ(uqu) is
important, not its form. Therefore the constantC appears as
the initial intensity of the magnetic turbulence.

B. The Stokes regime

Let us consider now a particular case of the initial velo
ity field being pure two-dimensional strainu5(s0x,
2s0y,0). Not only this is a simple model of a dynam
generated flow yet also known to be most dynamo-effec
when magnetic diffusivity is taken into account@7#. In the
case of large magnetic Prandtl number,n@s, a significant
amount of magnetic energy is concentrated at the sc
smaller than the dissipative scale of the kinetic energy~Kol-
mogorov scale!. Thus we will consider now the Stokes re
gime where the Reynolds number is small (L2s0!n). Then
for a two-dimensional strain we can rewrite Eq.~8! in the
stationary case as the following linear equation

~]112]22!A121]21~A222A11!1n¹2v32] tv350. ~25!

Note that we did not assume smallness ofv3 with respect to
s0, so that the secondary flow is allowed to be as strong
the initial strain flow. Note that even though] tv3 term is
important initially ~since v3[0 at t50) it will soon turn
negligible under the conditionn@s0L2 where L2 is the
~smaller! dimension of the magnetic spot. We assume t
condition to be satisfied initially and then it only improve
and the spot contracts iny–direction. We checked numer
cally that indeed] tv3 term is negligible except for a ver
short initial interval of time~see Fig. 1 and Sec. III A!. After
neglecting this term, Eq.~25! turns into a Poisson equatio
so that vorticity could be found analytically for any give
spatial form of the magnetic spot. Att50, A1250 while
A115A22. The initial evolution then can be studied analy
cally taking A from a kinematic stage. One can easily co
vince oneself that as time goes, the main term will b
2]21A11. Then,

v3~x,y,t !

5n21E E
2`

` A11~x8,y8,t !~x2x8!~y2y8!

@~x2x8!21~y2y8!2#2
dx8dy8. ~26!

That shows that vorticity has to appear as four vortices~be-
cause ofx→2x and y→2y symmetries! having centers
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where 2]21A11 is maximal ~i.e., on the periphery of the
spot!, the sign of vorticity is negative in the (x.0,y.0)
domain. To study a later stage when feedback is substa
we have to complete the system~23! and~25! by the follow-
ing equation

Dta5~] t1u•“ !a50, ~27!

which describes the evolution of the initial coordinates of t
fluid particles. For that we define the velocity field as

u5~s0x1]yc,2s0y2]xc!, ~28!

wheres0 is the strain andc is the stream function related t
the vorticity v3 by the relation

v352¹2c. ~29!

We will consider in our study the initial coordinates

a5~ax ,ay!5~x,y!, ~30!

with a vorticity v3 taken initially null. Then the algorithm to
solve the system is the following: using the initial conditio
~30! we solve Eq.~23! which leads to the value of the vor
ticity through the resolution of Eq.~25!. The value of the
stream function is deduced from Eq.~29!. Finally we have to
solve Eqs.~28! and~27! to come back to the beginning of th
loop.

FIG. 1. Temporal evolution in linear-log coordinates of the d
sipative term~solid line!, inertial terms~dash-dotted line! and time
derivative of the vorticity~dotted line! which appear in Eq.~8!. The
three quantities are integrated in absolute value in the entire b
8-3
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C. Kinematic stage

For the purpose of future comparison let us ment
briefly the well-known facts about the evolution during t
kinematic stage in the uniform strain flow. It is straightfo
ward to show that the vectora evolves according to

a5~xe2s0t,ye1s0t!, ~31!

and therefore the Jacobi matrix is

l5S e2s0t 0 0

0 es0t 0

0 0 1
D . ~32!

This result means that all termsAjn , j Þn, are null. In our
numerical simulations~see Sec. III! the functionF is defined
as

F~a!}exp~24~ax
21ay

2!! ~33!

in order to decrease rapidly at infinity.F(a) can be seen as
measure of the size of the turbulent spot. According to
~31! we see that the magnetic turbulence, initially contain
in a disk centered at the origin, will flatten in they-direction
because of its interaction with the uniform strain flow. T
description proposed here will become invalid when the s
of the spot will reach the size of the strain field, i.e., wh
the intermediate scale will reach the size of the large sca

III. NUMERICAL RESULTS

A. Initial setup and accuracy

Let’s present now the numerical simulations of the fee
back. The temporal evolution of the feedback in the Sto
regime is governed by the system of six equations~30!, ~23!,
~25!, ~29!, ~28!, ~27! derived above. The numerical resol
tion of such a system does not present any particular d
culty except for the Poisson equation~25,29! for which a full
multi-grid algorithm is used. All computations have a res
lution of 5123512 grid points in a box of sizeLB3LB , with
a length LB58. The valuess051, n523104 and C54
3104 are used. They have been chosen in order to equa
the contribution of the dissipative term to the magnetic te
(n;A11/s0) and to have a small Reynolds numb
(A11L

2/n2!1). In both cases the magnetic contribution
represented by the dominant termA11 which can be substi-
tuted for the intensity of the magnetic turbulenceC. With
this choice of parameters we see that at time of order one
ratio between the kinetic energy and the magnetic ene
s0L2/n, is much smaller than one. The initial velocity field
a pure two-dimensional strain. The resolution of Eq.~27!
leads after a finite time to unavoidable numerical problem
In practice they appear from timet;0.8 which will be con-
sidered consequently as the final time of computations. N
that our WKB formalism and the symmetry of the flow a
lowed us to reduce the three-dimensional problem to a t
dimensional one.
01640
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In order to prove that we are consistent with the assum
tion made in Sec. II B about the negligible role played
] tv3 ~and by the nonlinear terms!, we have first performed a
simulation including Eq.~8! instead of Eq.~25!. The algo-
rithm used to solve Eq.~8! is the following: first we solve the
left-hand-side of Eq.~8! and then the value found forv3 is
used to compute the right-hand side terms. Then at the
step the right-hand side terms are taken into account to
rect the Poisson equation constituted by the left-hand sid
Eq. ~8!. The result is displayed in Fig. 1: it is the tempor
evolutions of the time derivative of the vorticity* u] tv3udx,
inertial terms * uuj] jv3udx, and dissipative term
n* u¹2v3udx. The absolute values are taken to give the or
of magnitude of the different quantities. As expected t
term ] tv3 is important only initially, then the dissipative
term is greatly dominant. Consequently in the rest of t
study we will consider that the resolution of Eq.~25! is good
enough to describe the regime that we are dealing with.

B. Negative feedback and saturation

Figure 2 shows the contour plots ofA11(x,y) at timest
50.005, 0.4, 0.6, and 0.8. Hereafter only a quadrant is go
to be considered because of the symmetry of the probl
We clearly see on this quadrant the effect of the strain fl
on the spot which consists to break the initial symmetry
stretching the spot in one direction and contracting it in a
other. Note that the spot distortion at the kinematic sta
would lead to elliptic contours, and the observed deviat
from the elliptic shape is due to the back-reaction of turb
lence. This back-reaction is seen in Fig. 3: it is the cont
plot of the vorticityv3(x,y) for the same times as in Fig. 2
A negative vortex is produced at the periphery of the sp
Here again the initial symmetry is lost due to the effect of t
strain flow.

Temporal evolution of magnetic energy is displayed
Fig. 4: on top we have the evolution of*A11dx and
A11(xc,0) with xc5(0.15625,0.15625). A comparison
made with the exponential law of index 2 thatA11 should
follow in the kinematic case. For convenience the two qu
tities are normalized to their initial values. In the first stag
A11 follows the exponential law but soon we observe a d
viation which amplifies with time. We interpret that as
saturation effect due to the negative feedback of small sca
this saturation being more important closer to the cente
the spot. Note that at the final time of the computation
growth of the total energy, which is more or less*A11dx, is
smaller than that obtained without feedback by a fac
;1.56. The bottom of Fig. 4 deals with the temporal evo
tion of the total energy, the magnetic energies*A11dx and
*A22dx. The plots are compared with exponential laws
indices 2 and22. Note the symmetrical evolution of the tw
quantities. Temporal evolution in log-log coordinates of t
kinetic energy of the secondary flow integrated in the en
box is given in Fig. 5. As we see, it behaves roughly like
power law of index 2. We note finally that the kinetic ener
of the secondary flow is negligible compared to the magn
energy at all times~see also Fig. 4!.
8-4
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FIG. 2. Contour plots ofA11(x,y) at timest
50.005, 0.4, 0.6, and 0.8. Note the differe
scaling of thex- and y-axes for the last three
times. Only a fraction of the numerical box i
shown. A deviation from the elliptic shape is ob
served.
ity

a-
o
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in,
Figure 6 shows the temporal evolution of the veloc
gradient ]u(xj ,0)/]x at different points (xj ,0) along the
x-axis such thatxj50, 0.25, 0.5, and 1.0. This quantity me
sures the strain modifications by the secondary flow. N
01640
te

that strain reduction at the origin provides the mechanism
the negative feedback and the turbulence saturation. A c
parison is made with an exponential law of index22. The
gradient decreases more strongly closer to the orig
e
e
e.
FIG. 3. Contour plots of the vorticityv3(x,y)
at times t50.005, 0.4, 0.6, and 0.8. Note th
negative value of the vorticity; note also that th
absolute value of the vorticity increases in tim
Only a fraction of the numerical box is shown.
8-5
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FIG. 4. ~Top! Temporal evolution in linear-log coordinates o
*A11dx ~solid line!. A comparison is made withA11(xc,0) ~dash-
dotted line! at the pointxc5(0.156 25,0.156 25) and with an expo
nential law of index 2~dashed line!. The plots are normalized to
initial values @2.43104 for the integrated quantity, andA11(xc,0)
.1.13105#. ~Bottom! Temporal evolution in linear–log coordi
nates of the total energy~dotted line!, magnetic energies*A11dx
~increasing solid line! and*A22dx ~decreasing solid line!. The plots
are compared with exponential laws of indices 2 and22 ~dashed
line!.

FIG. 5. Temporal evolution in log-log coordinates of the kine
energy of the secondary flow~solid line! integrated in the entire
box. A comparison is made with a power law of index 2~dashed
line!. Note that the kinetic energy plays a negligible role in t
temporal evolution of the total energy~see also Fig. 4!.
01640
however its value never cross the axisy50. The temporal
evolution of integrated vorticity2*v3dx is given in Fig. 7.
It follows approximately a power law of index 1.

C. Energy conservation

Figure 8 shows the temporal evolution of the total ene
*@ET2ET(t50)#dx in which the kinetic energy of the strai
flow is not included, changes magnetic energies*@A11
2A11(t50)#dx, *@A22(t50)2A22#dx, components of the
kinetic energy*(]yC)2dx, *(]xC)2dx and dissipated ki-
netic energyn*0

t *(v3(x,t8))2dx dt8. We observe that each
quantity increases in time, including the total energy. As
said before, the kinetic energy is defined as the integral of
square velocity of the secondary flow. It is equal to the to
kinetic energy minus the kinetic energy of the backgrou
strain flow 1

2 *((U1u)22U2)dx, because the cross term

FIG. 6. Temporal evolution in linear-log coordinates of the v
locity gradient]u(xj ,0)/]x at different points (xj ,0) located along
thex-axis such thatxj50 ~solid line!, 0.25~dashed line!, 0.5 ~dash-
dotted line!, and 1.0~dotted line!. A comparison is made with an
exponential law of index22 ~long dashed line!.

FIG. 7. Temporal evolution in log-log coordinates of the int
grated vorticity2*v3dx ~solid line!. A comparison is made with a
power law of index 1~dashed line!.
8-6
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FEEDBACK OF A SMALL-SCALE MAGNETIC DYNAMO PHYSICAL REVIEW E63 016408
2*U•u dx equals zero. It may seem strange that the to
energy, the sum of the magnetic and kinetic energies, is
creasing. Explanation of this fact is in an insufficiently fa
decrease at infinity of the velocity field generated by
vortex quadrupole (u;1/R3 whereR is the distance from the
quadrupole’s center!. Because of that the integral over th
entire space of the energy flux terms like (n•U)(U•u) where
n is the normal to the domain of integration~in the local
energy equation!, diverges and it is not possible to obtain a
global energy equation. This situation is similar to the pro
lem without magnetic field where a turbulent spot of hi
Reynolds number velocity perturbations is placed in an
ternal large-scale strain@18#. In this case, the total energy
also increasing because of the similar reasons. It is inter
ing that if we had a multipole vortex structure with the num
ber of poles greater than four then its velocity field wou
decay faster thanR23 and the total energy would be con
served.

FIG. 8. Temporal evolution in log-log coordinates of the to
energy*ETdx2*ET(t50)dx ~solid line!, *A11dx2*A11(t50)dx
~dashed line!, *A22(t50)dx2*A22dx ~dash-dotted line!,
*(]yC)2dx ~long dashed line!, *(]xC)2dx ~dash-three-dotted line!,
andn*0

t *(v3)2dx ~dotted line!. Note increase of the total energy
e,

t

.

a,
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IV. CONCLUSIONS

In this paper, we have developed a WKB formalism to t
rapid distortion theory for MHD turbulence, at large ma
netic Prandtl number, in order to study the nonlinear dyna
problem and understand the origin of the saturation pha
The interaction between a spot of small-scale magnetic fl
tuations and a flow seen like a pure strain at large scales
been considered. The effect of the strain flow is to break
initial symmetry of the spot by stretching it in one directio
and contracting in another. The main property that we h
observed it is the generation of a set of four vortices alo
the sides of the spots due to the back-reaction of the evolv
spot. The vortices are such that they tend to suppress stre
ing inside the magnetic spot while accelerate it outside. T
effect leads to a negative feedback and provides a satura
mechanism of small-scale dynamo. Even though the ini
flow of two-dimensional pure strain has been considered
is claimed that the results are representative of wide cla
of dynamo-generated flows.

Although we have considered only 2-D strain fields, it
most likely that a similar mechanism of the dynamo satu
tion via generation of localized large-scale vortex structu
exists in 3-D too. Naturally, to be localized such vortic
must have shapes of closed loops. Thus, instead of a
vortex quadrupole, two oppositely oriented vortex rin
~mirror symmetric with respect to the principal plane of t
strain! will be observed.
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